FastAPI: A Comprehensive Guide for Beginners

Author

Kritim Yantra

Apr 14, 2025

FastAPI: A Comprehensive Guide for Beginners

FastAPI is a modern, fast (high-performance), web framework for building APIs with Python. It's designed to be easy to use, intuitive, and highly efficient. If you're familiar with Python and want to build APIs quickly, FastAPI is an excellent choice.

In this guide, we'll cover:

  • What is FastAPI?
  • Why use FastAPI?
  • Setting up FastAPI
  • Creating your first API
  • Path parameters & query parameters
  • Request body (POST, PUT, PATCH)
  • Data validation with Pydantic
  • Response models
  • Error handling
  • Working with databases (SQL & NoSQL)
  • Authentication & Authorization
  • Deployment options
  • Best practices

1. What is FastAPI?

FastAPI is a Python framework for building web APIs. It is built on top of Starlette (for web server functionality) and Pydantic (for data validation). Some key features include:

  • Fast: Comparable to Node.js and Go in terms of speed.
  • Easy to use: Intuitive syntax, similar to Flask.
  • Automatic docs: Generates Swagger UI and ReDoc documentation automatically.
  • Type hints: Uses Python type hints for better code readability and validation.
  • Async support: Built-in support for asynchronous programming.

2. Why Use FastAPI?

Here’s why developers love FastAPI:
Blazing fast performance (thanks to Starlette and Pydantic)
Automatic API documentation (Swagger & ReDoc)
Data validation using Pydantic models
Easy to learn (similar to Flask but more powerful)
Asynchronous support (works well with async/await)
Production-ready (used by companies like Uber, Netflix, and Microsoft)


3. Setting Up FastAPI

Installation

First, install FastAPI and an ASGI server (like Uvicorn or Hypercorn):

pip install fastapi uvicorn

Basic FastAPI App

Create a file main.py:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
def read_root():
    return {"message": "Hello, FastAPI!"}

Run the Server

uvicorn main:app --reload
  • --reload enables auto-reload during development.
  • Open http://127.0.0.1:8000 to see your API response.

Check Automatic Docs

  • Swagger UI: http://127.0.0.1:8000/docs
  • ReDoc: http://127.0.0.1:8000/redoc

4. Path Parameters & Query Parameters

Path Parameters

@app.get("/items/{item_id}")
def read_item(item_id: int):
    return {"item_id": item_id}
  • item_id is automatically converted to an integer.

Query Parameters

@app.get("/items/")
def read_items(skip: int = 0, limit: int = 10):
    return {"skip": skip, "limit": limit}
  • Access via: http://127.0.0.1:8000/items/?skip=5&limit=20

5. Request Body (POST, PUT, PATCH)

FastAPI uses Pydantic models to define request bodies.

Define a Pydantic Model

from pydantic import BaseModel

class Item(BaseModel):
    name: str
    description: str | None = None
    price: float
    tax: float | None = None

POST Request

@app.post("/items/")
def create_item(item: Item):
    return {"item": item}
  • Test in Swagger UI or using curl:
curl -X POST "http://127.0.0.1:8000/items/" -H "Content-Type: application/json" -d '{"name":"Laptop","price":999.99}'

6. Data Validation with Pydantic

FastAPI automatically validates data using Pydantic.

Example with Validation

from pydantic import BaseModel, Field

class User(BaseModel):
    username: str = Field(min_length=3, max_length=20)
    age: int = Field(gt=0, lt=120)
  • If invalid data is sent, FastAPI returns a 422 Unprocessable Entity error.

7. Response Models

You can define what data your API returns:

@app.post("/users/", response_model=User)
def create_user(user: User):
    return user
  • Ensures only the fields defined in User are returned.

8. Error Handling

FastAPI provides HTTPException for custom errors:

from fastapi import HTTPException

@app.get("/items/{item_id}")
def read_item(item_id: int):
    if item_id == 0:
        raise HTTPException(status_code=404, detail="Item not found")
    return {"item_id": item_id}

9. Working with Databases

SQL (SQLAlchemy)

Install SQLAlchemy:

pip install sqlalchemy

Example with SQLite:

from sqlalchemy import create_engine, Column, Integer, String
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

SQLALCHEMY_DATABASE_URL = "sqlite:///./test.db"
engine = create_engine(SQLALCHEMY_DATABASE_URL)
SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
Base = declarative_base()

class User(Base):
    __tablename__ = "users"
    id = Column(Integer, primary_key=True, index=True)
    name = Column(String)
    email = Column(String, unique=True)

Base.metadata.create_all(bind=engine)

NoSQL (MongoDB)

Install Motor (async MongoDB driver):

pip install motor

Example:

from motor.motor_asyncio import AsyncIOMotorClient

client = AsyncIOMotorClient("mongodb://localhost:27017")
db = client.test_db
collection = db.users

10. Authentication & Authorization

FastAPI supports OAuth2, JWT, and API keys.

Basic JWT Authentication

Install python-jose and passlib:

pip install python-jose[cryptography] passlib[bcrypt]

Example:

from fastapi.security import OAuth2PasswordBearer

oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")

@app.get("/users/me")
def read_current_user(token: str = Depends(oauth2_scheme)):
    return {"token": token}

11. Deployment Options

FastAPI can be deployed using:

  • Docker
  • Uvicorn/Gunicorn (for production)
  • Cloud services (AWS, GCP, Azure)
  • Platforms (Heroku, Render, Vercel)

Deploying with Docker

FROM python:3.9
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "80"]

Run:

docker build -t fastapi-app .
docker run -d -p 80:80 fastapi-app

12. Best Practices

✔ Use Pydantic models for data validation
✔ Enable CORS if your API is used by frontend apps
✔ Use environment variables for configurations
✔ Implement rate limiting to prevent abuse
✔ Write unit tests (using pytest)
✔ Use async/await for I/O-bound operations


Conclusion

FastAPI is a powerful, easy-to-use framework for building APIs in Python. It combines speed, simplicity, and modern features like automatic docs, data validation, and async support. Whether you're building a small API or a large-scale application, FastAPI is a great choice.

Next Steps

  • Explore FastAPI’s official docs: https://fastapi.tiangolo.com/
  • Try integrating with frontend frameworks (React, Vue)
  • Learn about WebSockets in FastAPI

Happy coding! 🚀

Tags

Python FastAPI

Comments

No comments yet. Be the first to comment!

Please log in to post a comment:

Sign in with Google

Related Posts

Advanced Flask Interview Questions and Answers
Kritim Yantra Kritim Yantra
Feb 24, 2025
10 Awesome Prompts to Supercharge Your Work and Information Retrieval
Kritim Yantra Kritim Yantra
Apr 10, 2025